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Introduction 

In this report, we are continuing the investigation of the relationship between median home values and 

several neighborhood characteristics in Philadelphia. We are specifically looking at owner-occupied 

housing units in Philadelphia and using data at the census block group level. Our dependent variable is 

median value of all owner-occupied housing units, and our predictors are the proportion of residents with 

at least a bachelor’s degree, the proportion of housing units that are vacant, the precent of housing units 

that are detached single family houses, and the number of households with incomes below 100% of the 

poverty level within each block group.  

Our last report used Ordinary Least Square (OLS) regression to examine this relationship, but this approach 

is often inappropriate for data sets like ours that include spatial components. To account for this, we will 

run spatial lag, spatial error, and geographically weighted regression on our data to examine if these 

methods can account for the spatial autocorrelation that exists with OLS residuals.   

Methods 

a) Description of the Concept of Spatial Autocorrelation 

A key premise in spatial statistics is the First Law of Geography.  This law describes the concept of spatial 

autocorrelation, which Waldo Tobler states is the theory that “everything is related to everything else, 

but near things are more related than distant things.”  We will use Moran’s I to understand if spatial 

autocorrelation is present without our data. Moran’s I is a method for testing for spatial autocorrelation 

which looks at the covariance of the variables at nearby locations and standardizes this value by the 

variance in the variable. The equation for Moran’s I is presented below where 𝑋̅ is the mean of variable 

X, 𝑋𝑖  is the value of variable X at a particular location i, 𝑋𝑗 is the variable value at another location j, 𝑊𝑗𝑗 

is the weight indexing location of i relative to j, and n is the number of observations.  
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As mentioned above, the equation for Moran’s I includes a weight indexing location which is based on the 

weight matrix. This allows us to identify and account for spatial proximity of block groups. We will use the 

queen weight matrix, a contiguity-based measure of proximity, throughout this report.  The queen 

neighbor approach identifies neighbors as those that intersect at either a point or a segment. In our case, 
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this means that neighbors are considered block groups that share a point or segment of a border with 

another block group. Some statisticians like to use and try more than one spatial weight matrix in analyses 

as it helps to ensure that results are not solely determined by the matrix choice.  

We will identify if our spatial autocorrelation values are significant by testing the following three 

hypotheses: 

𝐻0: 𝑁𝑜 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

𝐻𝑎1:  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

𝐻𝑎2:  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

First, we will calculate Moran’s I values on our variable for each block group, shuffle the values around on 

our map of Philadelphia block groups 999 times, then organize all 1,000 Moran’s I values in descending 

order (or ascending order if the Moran’s I value is negative). We will then identify where the original 

Moran’s I value is within the entire list of all permutations. We will then calculate the pseudo p-value by 

dividing the rank of the original Moran’s I by 1,000. If this value is below 0.05, we will reject the null 

hypothesis, 𝐻0, that spatial autocorrelation is not present. 

Another aspect of spatial dependencies is local spatial autocorrelation, which aims to determine if and to 

what extent values at places in vicinity of the location i are associated with i. We can use both local and 

global Moran’s I to understand if spatial autocorrelation is present in our dataset.  

b) Review of OLS Regression and Assumptions 

As part of our last report, we used OLS regression, which examines the strength and direction relationships 

between variables and breaks down the goodness of fit model. OLS regression calculates the amount by 

which the dependent variable changes when a predictor changes by one unit while holding any other 

predictors constant. As part of OLS, we make several model assumptions. We first assume there is a linear 

relationship between the dependent variable and each of the predictors. We also assume independence 

of our observations and residuals. Additionally, we assume our residuals are normally distributed. We also 

assume homoscedasticity of our residuals. The final assumption is that there is no multicollinearity. 

However, when the data has spatial elements, as our dataset does, we often cannot assume that the 

errors are independent. We can test this assumption by examining the spatial autocorrelation of residuals 

using Moran’s I. Another way to test OLS residuals for spatial autocorrelation is to regress the errors on 

nearby errors. In our case, we would regress the residual on residuals of neighboring block groups as 

defined by the queen matrix. The neighboring residual is known as the lagged residual or ρ (rho), also 

known as λ (lambda).  

We are using GeoDa to run our regression. GeoDa has methods of testing the other regression 

assumptions. GeoDa has three ways to test for heteroscedasticity. These include the Breusch-Pagan Test, 

the Koenker-Bassett Test, and the White Test. Each of these tests use the hypotheses listed below. If the 

p-value is less than 0.05, then we will reject the null hypothesis, 𝐻0, that there is no heteroscedasticity.  

𝐻0: 𝑁𝑜 ℎ𝑒𝑡𝑒𝑟𝑜𝑠𝑐𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

𝐻𝑎:  𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑐𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 
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GeoDa also has the Jarque-Bera test which tests for normality of errors. This test examines the hypotheses 

presented below. Again, if the p-value is below 0.05 then we will reject the null hypothesis, 𝐻0, that errors 

are normal.  

𝐻0: 𝐸𝑟𝑟𝑜𝑟𝑠 𝑎𝑟𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 

𝐻𝑎:  𝐸𝑟𝑟𝑜𝑟𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 

 

c) Spatial Lag and Spatial Error Regression 

We will use GeoDa to also run the spatial lag and spatial error regressions. The spatial lag model assumes 

that the value of the dependent variable in one location is associated with the values of the dependent 

variable in locations nearby. Nearby locations are defined by the weight matrix, which in our case is the 

queen weight matrix. The model will include the spatial lag, known as ρ (rho), of the dependent variable 

as a predictor. The equation for the spatial lag model is presented below, where ρ is the coefficient of Wy 

which is the lag of the variable y, 𝛽
𝑜
 is the intercept of the dependent variable, 𝛽

1
𝑋1 … 𝛽

𝑛
𝑋𝑛 represents 

the predictor variables and their coefficients, and 𝜀 is the errors.  

 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐿𝑎𝑔 =  𝜌𝑊𝑦 +  𝛽0 + 𝛽1𝑃𝐶𝐵𝐴𝐶𝐻𝑀𝑂𝑅𝐸 + 𝛽2𝑃𝐶𝑇𝑉𝐴𝐶𝐴𝑁𝑇 + 𝛽3𝑃𝐶𝑇𝑆𝐼𝑁𝐺𝐿𝐸𝑆

+ 𝛽4𝑁𝐵𝐸𝐿𝑃𝑂𝑉100 + 𝛽5𝑀𝐸𝐷𝐻𝐻𝐼𝑁𝐶 + 𝜀 

 

The spatial error model assumes that the error in one location is associated with the errors at nearby 

locations. Again, nearby is defined by the weight matrix in use, which in this case is the queen weight 

matrix. To run a spatial error model, we first must run an OLS regression where we regress the dependent 

variable on the predictors then we regress the residuals on the nearest neighbor residuals. This will 

separate the residuals into two groups: one with the spatial component, λWε, and one which is random 

noise, 𝑢. The equation for the spatial error model is presented below, where 𝛽
𝑜
 is the intercept of the 

dependent variable, 𝛽
1

𝑋1 … 𝛽
𝑛

𝑋𝑛 represents the predictor variables and coefficients, and λ is the 

coefficient of Wε, the spatially lagged residuals, and 𝑢 is random noise. 

 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 =  𝜆𝑊𝜀 + 𝛽0 + 𝛽1𝑃𝐶𝐵𝐴𝐶𝐻𝑀𝑂𝑅𝐸 + 𝛽2𝑃𝐶𝑇𝑉𝐴𝐶𝐴𝑁𝑇 +  𝛽3𝑃𝐶𝑇𝑆𝐼𝑁𝐺𝐿𝐸𝑆

+ 𝛽4𝑁𝐵𝐸𝐿𝑃𝑂𝑉100 + 𝛽5𝑀𝐸𝐷𝐻𝐻𝐼𝑁𝐶 + 𝑢 

 

The previously mentioned assumptions needed for OLS are still needed for both spatial lag and spatial 

error regression, except for the assumption of spatial independence of observations. By using spatial lag 

and spatial error regression instead of OLS, we hope that the residuals are not spatially autocorrelated 

and less heteroscedastic. We will compare the results of both the spatial lag and spatial error regressions 

with those of OLS. We will look at several criteria to determine whether the spatial models perform better 

than OLS. These criteria include the Akaike Information Criterion (AIC), the Schwarz Criterion, the log 

likelihood, and the likelihood ratio test.  

The AIC and Schwarz Criterion both measure the quality of a model. Both criteria require the use of at 

least two models as they compare the value of one model to that of another. In both cases, a better model 
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would have a smaller AIC and Schwarz Criterion value. The log likelihood identifies the maximum 

likelihood method of fitting regression models to the data. When looking at log likelihood, a better model 

would have a higher log likelihood value. Finally, the likelihood ratio test compares the OLS model with 

the spatial model. The likelihood ratio test uses the hypotheses presented below. If the p-value is less 

than 0.05, we will reject the null hypothesis, 𝐻0, that the spatial lag model is not better than the OLS 

model.  

𝐻0: 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑙𝑎𝑔 𝑎𝑛𝑑 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑚𝑜𝑑𝑒𝑙𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑂𝐿𝑆 𝑚𝑜𝑑𝑒𝑙 

𝐻𝑎:  𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑙𝑎𝑔 𝑎𝑛𝑑 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑚𝑜𝑑𝑒𝑙𝑠 𝑎𝑟𝑒 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑂𝐿𝑆 𝑚𝑜𝑑𝑒𝑙 

Another way to compare the OLS results with the spatial lag and spatial error results is to look at the 

Moran’s I of regression residuals. For Moran’s I, we look to see if we can fail to reject the null hypothesis, 

𝐻0, which is that there is no spatial autocorrelation present. We can only fail to reject the null hypothesis 

if the p-value is above a certain alpha level, which is typically 0.05. When comparing multiple models, we 

can decide if one is better if we can fail to reject the null hypothesis or if the p-value is notably greater 

than p-values of the other models. 

d) Geographically Weighted Regression 

We will conduct our geographically weighted regression (GWR) using ArcGIS. GWR builds on OLS and takes 

spatial non-stationarity into account. GWR allows us to run multiple local regressions instead of running 

a single, global regression. A local regression allows us to understand the relationships between 

dependent and predictor variables across space. It is applied to each of the locations in a dataset, which 

in this case is block groups.  GWR allows us to disaggregate our data and look at it regionally, rather than 

globally, which helps us determine relationships on a regional level and understand if Simpson’s Paradox 

is occurring. Simpson’s Paradox is a phenomenon that can occur within datasets where relationships 

appear or change at different scales. For example, there may be a negative relationship between two 

variables when looking at the entire city but when we disaggregate the data into groups or regions, we 

may see that some areas have positive relationships.  

We present the equation for GWR below, where 𝛽𝑖0 represents the intercept term of the regression 

equation at location i, 𝛽
𝑖1

𝑋𝑖1 … 𝛽
𝑖𝑛

𝑋𝑖𝑛 represents the predictor variables at location i, and 𝜀𝑖  represents 

the errors at location i. It is critical to include the subscript i because it indicates that the regression model 

refers to the relationship between the predictors and the dependent variable only at the specific location, 

i.  

 

𝑦𝑖 = 𝛽𝑖0 + 𝛽𝑖1𝑥𝑖1 + 𝛽𝑖2𝑥𝑖2 + ⋯ + 𝛽𝑖𝑚𝑥𝑖𝑚 + 𝜀𝑖 

 

= 𝛽𝑖0 + ∑ 𝛽𝑖𝑘

𝑚

𝑘=1

𝑥𝑖𝑘 + 𝜀𝑖  

 

Local regression requires several observations to run. In this case, the observations are the block group 

locations. This is necessary because GWR uses other observations in the dataset when running its 

regression. GWR assigns weights to the other observations, which vary based on the given location i.  An 
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observation closer to location i will have a greater weight in the regression and therefore a stronger 

influence on the estimation of the parameters for location i.   

To identify which observations are close to a given location i, we will choose an appropriate bandwidth, 

or distance measure. Bandwidth allows us to determine if another observation should be considered a 

neighbor of the observation in question. There are two options when using bandwidth: fixed bandwidth 

and variable bandwidth. Fixed bandwidth uses a constant distance from the observation and assigns all 

the observations within that certain distance as a close neighbor. Fixed bandwidth may result in some 

observations having a greater or lesser number of neighbors than other observations based on the 

distribution of observations in space. Adaptive bandwidth uses a fixed number of observations, but the 

distance will not always be the same. This is because the distance necessary to travel from each 

observation to find the fixed number of neighbors may change based on the distribution of observation 

in space. In this way, adaptive bandwidth prioritizes having the same number of neighbors for each 

observation. We will use adaptive bandwidth in our analysis. This is more appropriate than fixed 

bandwidth because our observations are heterogeneously shaped polygons and are varied across space. 

If our dataset had a more even distribution of observations across space, then we would use a fixed 

bandwidth. 

Many of the assumptions we use in OLS still hold in GWR except for the assumption of global 

multicollinearity. Because GWR uses local regression for each observation and feature in the dataset, the 

value of explanatory variables is often substantially spatially clustered, and we run into a problem with 

multicollinearity. This is also a problem when two or more of the predictor variables have similar clustered 

patterns. We will use a condition number, which measures the amount of multicollinearity. A condition 

number of over 30 or equal to zero means there is multicollinearity present.  

GWR differs from other regression models like OLS because it does not produce a p-value as an output. 

GWR has one set of parameters and one set of standard errors for each regression point. This leads to a 

very large number of tests that would be required to determine significance. If we were to run significance 

tests on each of the regression points, we would expect a certain number of significant results based 

simply on chance. There are methods to conduct multiple testing, but they are not currently available in 

ArcGIS.  

Methods 

a) Spatial Autocorrelation 

To determine spatial autocorrelation, we first look at the Global Moran’s I. Below, a scatterplot of Global 

Moran’s I using queen weight matrix is presented.  
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Figure 1: Global Moran's I and Significance Test (LNMEDHVAL) 

We interpret this scatter plot as how many standard deviations a block group is from LNMEDHVAL from 

its queen neighbors. The Global Moran’s I value is 0.794, thus we can reject 𝐻0 in favor of 𝐻𝑎1, that there 

is positive spatial autocorrelation. 

Next, we completed significance testing using 999 permutations. The histogram below shows the 999 

permutations, where the green line represents our Moran’s I value of 0.794. The pseudo p-value is 

calculated by ranking the 1,000 Moran’s I values in descending order, identifying the rank of the actual 

Moran’s I value and dividing it by 1,000 (Rank of 1 / 1000 = 0.001). Because our pseudo p-value is < 0.05, 

we reject H0 that there is no spatial autocorrelation. 

Local Moran’s I is another way to determine spatial autocorrelation in which we use Local Indices of Spatial 

Autocorrelation (LISA). Local Moran’s I is a measure of how similar location (i) is to its queen neighbors (j), 

or more simply stated, a measure of similarity to nearby observations.  

 

 

Figure 2: Local Moran's I Outputs 

The outcomes for our LISA statistic can either be classified as (1) High-High (High Xi and High Xj with 

positive spatial autocorrelation); Low-Low (Low Xi and Low Xj with positive spatial autocorrelation); (3) 
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Low-High (Low Xi and High Xj with negative spatial autocorrelation); (4) High-Low (High Xi and Low Xj with 

negative spatial autocorrelation); (5) not significant. Given this is the median household value, the clusters 

make sense. Our high-high clusters are in Northwestern and Northeastern Philadelphia approaching the 

suburbs, as well as the Center City, Old City, and University City areas. Our low-low clusters are in North 

Philadelphia and West Philadelphia. These make sense given the economic conditions of these regions. 

Our low-high and high-low areas are more sporadic but are found mostly in Center City, South 

Philadelphia, and West Philadelphia, where there is more diversity in economic conditions. 

b) A Review of OLS Regression and Assumptions: Results 

We revisited OLS regression from our previous report, where we regressed LNMEDHVAL on 

PCTBACHMORE, PCTSINGLES, PCTVACANT, and LNBELPOV100.  The table of our findings is presented 

below. 

Table 1: OLS Regression Table 

 

All four of our indicators are highly significant. LNNBELPOV and PCTVACANT are negatively correlated with 

LNMEDHVAL whereas PCTBACHMOR and PCTSINGLES are positively correlated with LNMEDHVAL. Our R-

squared is 0.66, indicating that 66% of the variance in LNMEDHVAL has been explained by the model. 

We have several assumptions when completing OLS regression. First, we assume homoscedasticity, that 

the variance of the residuals is constant. Next, we assume the normality of our residuals. Third, we assume 

observations are independent of each other, meaning there should be no spatial dependencies within the 

data.  

We check for homoscedasticity through the Breusch-Pagan test, the Koenker-Bassett test, and the White 

test. If the p-value < 0.05, then we reject 𝐻0 that there is no heteroscedasticity. We use the Jarque-Bara 

test to examine normality of our errors. If the p-value < 0.05, then we reject 𝐻0 that there is normality of 

our errors. When testing spatial autocorrelation, we will again use the Moran’s I test and the significance 

test. 

We first tested for homoscedasticity, where the Breusch-Pagan, the Koenker-Bassett, and the White tests 

all produced p-values of 0.00. All three tests have a p-value < 0.05, thus we reject 𝐻0 that there is no 
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heteroscedasticity. Heteroscedasticity is important because our residuals should just be random noise. 

This is the first problem we encounter with OLS. 

Next, we used the Jarque-Bera test to examine the normality of the distribution of errors. The result of 

the test was a p-value < 0.001, meaning we reject 𝐻0 that errors are normal, thus indicating an issue with 

normality of residuals. 

After, we analyze our OLS residuals against our weighted residuals (the queen neighbors from earlier). 

The scatterplot of this is presented below. 

 

 

Figure 3: OLS Residuals and Weighted Residuals Scatterplot 

The scatterplot has a slope-b of 0.733; we can interpret this as an increase of 1 unit in the lagged residual 

will change the residual by 0.733 units. However, this is problematic; if there is a relationship between 

OLS residuals and weighted residuals, spatial dependencies exist which violates the assumption of residual 

independency.  

We also ran a Moran’s I test and a significance test. 
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Figure 4: Significance Test (OLS Regression) 

The Moran’s I value is 0.791, thus we can reject 𝐻0 in favor of 𝐻𝑎1, because there is a positive correlation 

with a value close to 1. When running the significance test, again, our pseudo p-value is equal to 0.001. 

Since 0.001 < 0.05, we reject 𝐻0 that there is no spatial autocorrelation. This again exemplifies the 

problematic nature of our model, as our residuals should not be spatially autocorrelated.  

The OLS model of Philadelphia’s block groups indicates heteroscedasticity, non-normality of residuals, and 

spatial dependency in the residuals, which go against the several assumptions we have when running an 

OLS regression. Because of the spatial components of our data, OLS regression is likely not a good fit. Our 

next two sections will look at spatial error, spatial lag, and geographically weighted regression, all models 

that account for spatial components, to see if they have a better goodness of fit. 

c) Spatial Lag and Spatial Error Regression: Results 

First, we will look at the spatial lag model. As aforementioned, the spatial lag model uses the spatial lag 

of LNMEDHVAL as a predictor, where 𝜌 is indicative of the lag of 𝑊𝑦. Presented below are the results of 

our spatial lag regression. 
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Table 2: Spatial Lag Regression 

 

All the variables from the OLS regression are presented, with the addition of “W_LNMEDHVAL” which is 

the spatial lag of LNMEDHVAL, also known as the coefficient of the parameter 𝜌. With a p-value < 0.001, 

it is a significant indicator in our model. Since W_LNMEDHVAL is significant, we can assume that logged 

median house value at one location is associated with logged median house values that are queen 

neighbors. Comparatively to OLS, all our other predictors remain with p-values < 0.05, indicating they are 

all still significant.  

We completed the Breusch-Pagan test on the spatial lag regression and got a p-value < 0.001. Since the 

p-value < 0.05, we reject 𝐻0 that there is no heteroscedasticity, indicating there is still a problem with 

heteroscedasticity even with our new model.  

Next, we compared the spatial lag regression to the OLS regression based on the Akaike Information 

Criterion (AIC), the Schwarz criterion, the log likelihood, and the likelihood ratio test. These tools all help 

compare our models and indicate their goodness of fit. The results are presented in the table below. 

Table 3: OLS v. Spatial Lag 

Test OLS Spatial Lag 

AIC 1432.99 523.48 

Schwarz  1460.24 556.18 

Log Likelihood -711.49 -255.74 

Likelihood Ratio  p-value = 0.00 

 

Since the AIC of the spatial lag model is smaller by more than a difference of 3, we can assume the spatial 

lag has a better goodness of fit than OLS. This outcome is seen again the Schwarz criteria. Since the spatial 

lag’s log likelihood is larger than the OLS’ log likelihood, we can again assume the spatial lag has a better 

goodness of fit than OLS. 

Finally, we look at Moran’s I and significance testing to see if spatial dependencies exist.  
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Figure 5: Moran's I and Significance Test (Spatial Lag) 

Our Moran’s I value is -0.082 and our pseudo p-value is 0.001. Because our Moran’s I value is closer to 0, 

we see there is significantly lower spatial autocorrelation. However, our pseudo p-value < 0.05, so we 

reject 𝐻0 that there is no spatial autocorrelation. While there is still a presence of heteroscedasticity and 

spatial dependencies, our previous tests indicate that the spatial lag is a better specification than the OLS 

model, and thus we can reject 𝐻0 that OLS regression is doing a better job than spatial lag model. 

We repeat these same steps but now using the spatial error model. The spatial error model assumes that 

residuals at one location are associated with residuals at nearby locations. Again, the spatial error model 

follows the same equation as OLS, but account for spatially lagged residuals, λWε, and random noise, 𝑢. 

Presented below is the output of our spatial error regression. 

Table 4: Spatial Error Model 

 

The lag coefficient, λ, is equal to 0.81. With a p-value < 0.05, we can assume that it is a significant indicator 

in our model. Since λ falls on a -1 to 1 scale, we see there is a quite strong positive correlation. 

Comparatively to OLS, our previous four predictors all also maintain p-values < 0.05, so they are also 

significant indicators in our model. 
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We completed the Breusch-Pagan test on the spatial error regression and got a p-value < 0.001. Since the 

p-value < 0.05, we reject 𝐻0 that there is no heteroscedasticity, indicating there is still a problem with 

heteroscedasticity. 

Next, we use the same four tests as we did in spatial lag to see which model has a stronger goodness of 

fit. The model comparison interpretations remain the same for spatial error. 

Table 5: OLS v. Spatial Error 

Test OLS Spatial Error 

AIC 1432.99 755.38 

Schwarz  1460.24 782.631 

Log Likelihood -711.49 -372.69 

Likelihood Ratio  p-value = 0.00 

 

Since the AIC of the spatial error model is smaller by more than a difference of 3, we can assume the 

spatial lag has a better goodness of fit than OLS. This outcome is seen again the Schwarz criteria. Since 

the spatial error’s log likelihood is larger than the OLS’ log likelihood, we can again assume the spatial 

error has a better goodness of fit than OLS. With a likelihood ratio p-value < 0.001, we reject 𝐻0 that OLS 

regression is doing a better job than spatial error. 

The Moran’s I and significant tests for spatial error regression are presented below. 

 

Figure 6: Moran's I and Significance Test (Spatial Error) 

Our Moran’s I value is -0.095 and our pseudo p-value is 0.001. Because our Moran’s I value is closer to 0, 

we see there is significantly less correlation. However, our pseudo p-value < 0.05, so we reject 𝐻0 that 

there is no spatial autocorrelation. While there is still a presence of heteroscedasticity and spatial 

dependencies, our previous tests indicate that the spatial error is a better specification than the OLS 

model, and thus we can reject 𝐻0 that OLS regression is doing a better job than spatial error model. 

Overall, in comparison to OLS, both spatial lag and spatial error have a better goodness of fit to our data. 

Despite continual problems with heteroscedasticity and spatial dependency, we find that through our 

different tests and Moran’s I plot, they are still doing better than OLS. When analyzing which is better 
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between spatial lag and spatial error, we only use AIC and Schwarz. For both tests, we are looking at which 

one has a lower value. The AIC and Schwarz values for both models are in the table below. 

Table 6: Spatial Lag v. Spatial Error 

Test Spatial Lag Spatial Error 

AIC 523.48 755.38 

Schwarz  556.18 782.631 

 

Spatial lag has lower AIC and Schwarz values in comparison to spatial error, thus we would assume that 

spatial lag model has a better goodness of fit than spatial error. 

d) Geographically Weighted Regression: Results 

Finally, we complete a geographic weighted regression as our final model method. 

Table 7: GWR Diagnostics 

 

We did not use R2 for the spatial lag and spatial regression models because the interpretation of R2 is 

different compared to OLS. However, we look at the R2 value to determine which model does the best job 

at explaining the variance in LNMEDHVAL. In our OLS model, the R2 is equal to 0.66 whereas in GWR, it is 

equal to 0.86. With a higher R2 closer to 1, GWR does a better job at explaining the variance in the dependent 

variable. 

The AIC of our GWR model is equal to 582.15, in comparison to 1432.99, 523.48, and 755.38 for OLS, 

spatial lag, and spatial error, respectively. We are looking for the smallest value for goodness of fit, thus 

when using AIC, spatial lag would be the best, followed by GWR, spatial error, and OLS, respectively. 

Now, we present the Moran’s I value and significance test for GWR. 
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Figure 7: Moran's I and Significance Test (GWR) 

Our Moran’s I value is equal to 0.021. With a value close to 0, we can assume there are no spatial 

dependencies. Our pseudo p-value in the significance test is equal to 0.065. Since the value > 0.05, we fail 

to reject 𝐻0 that there is no spatial autocorrelation. GWR is the only model to have no spatial 

dependencies and has the Moran’s I that is closest to 0. Since we uphold a lot of the same assumptions in 

GWR as we do with OLS, our model seems to be doing a significantly better job at upholding those 

assumptions. Since GWR has the closest Moran’s I to 0 and the only model where we fail to reject 𝐻0, we 

believe it is a better choice than OLS, spatial lag, and spatial error. 

Next, we want to understand the local dynamics that are captured within GWR modelling; specifically, we 

want to understand relationships between the dependent variable and predictors across space and how 

well our multiple regressions capture this. First, we look at local R2 for all census blocks. 
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Figure 8: Global R2 Choropleth Map 

An R2 closer to 1 indicates a strong fit whereas an R2 closer to 0 indicates a weak fit. Something to note is 

that ArcGIS Pro has an implementation error that causes some of our outputs to be negative values. 

Regardless, we see throughout several parts of the city, we have strong fits, but there is great variation 

across R2. There are several census blocks where the model has a weaker fit, but the R2 for the entirety of 

our study area is 0.86, which means that our model is doing a great job at explaining the variance in 

LNMEDHVAL. 

Now, we look at coefficient estimates across our four indicators. Here is what are scale indicates. 

SE ≤ -2: negative relationship with DV, possibly significant (dark blue) 

-2 < SE ≤ 0: negative relationship with DV, possibly insignificant (light blue) 

0 < SE < 2: positive relationship with DV, possibly insignificant (light red) 

SE ≥ 2: positive relationship with LNMEDHVAL, possibly significant (red) 

 

Our four indicator maps are attached, where ratio1 is PCTBACHMOR, ratio2 is PCTVACANT, ratio3 is 

PCTSINGLES, and ratio4 is LNNBELOWPOV. 
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Figure 9: Spatial variation maps of indicators  

These maps examine spatial stationary relationships across LNMEDHVAL and the respective predictors. 

We see quite strong regional variation across all four predictors. For PCTBACHMOR, we see minimal 

clustering and positive correlation across all census blocks, with possible significance especially in parts in 

South, West, and Northwest Philadelphia. For PCTVACANT, we see significant negative relationships in 

South Philadelphia, University City, and around Fairmount Park, whereas only a few blocks have a 

significant positive correlation. For PCTSINGLES, it appears the further outside downtown Philadelphia the 

block is, the more likely there is to be a positive and significant relationship. LNNBELOWPOV seems to 

have the most global variation, with significant negative relationships in parts of Northwest, South and 

downtown Philadelphia, and very minimal significant positive relationships. If we look at the counts of 

each metric on our scale, we can assume that for PCTBACHMOR, most of our census blocks have 

significant positive correlations; for PCTVACANT, we mostly have negative correlations with some being 

likely significant and most being unlikely significant; for PCTSINGLES, we see significant variation in 
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correlation and significance; and for LNNBELOWPOV, we see mostly negative correlations, with the 

majority being likely insignificant. 

 

Results 

In this paper, we revisited our previous study on the relationship between median household values and 

several neighborhood predictors in Philadelphia at the census block group level. We preserved our same 

four indicators as before. Previously, we used an Ordinary Least Squares regression, but we found several 

limitations to the method, specifically with the several violations of the model which included 

heteroscedasticity, multicollinearity, non-normality of residuals, and spatial dependencies. This is because 

OLS is not generally a go-to model choice when dealing with spatial data. Thus, in this analysis, we focused 

on other models that accounted for different spatial dynamics to our data to reduce heteroscedasticity 

and normalize our residuals. 

We used Akaike Information Criterion, Schwarz Information Criterion, Log Likelihood, and Likelihood Ratio 

tests to determine goodness of fit. We then used Breusch-Pagan test to determine heteroscedasticity, 

and finally Moran’s I and significance testing to determine spatial autocorrelation. Overall, we found that 

spatial lag, spatial error and GWR all had lower AIC and Schwarz than OLS, indicating better goodness of 

fit. Spatial lag overall had the best goodness of fit based on AIC and Schwarz. However, when we looked 

at Moran’s I and significance tests, we found that spatial lag and spatial error still violated errors 

associated with heteroscedasticity and spatial autocorrelation residuals. GWR produced the Moran’s I 

closest to 0, and we could also fail to reject that there is no spatial autocorrelation. Thus, we would state 

that GWR is the best model based on our results. 

Despite spatial lag, spatial error, and GWR all being better fits than OLS, there were still limitations to this 

study. As aforementioned, spatial lag and spatial error produced p-values of 0.00 after the Breusch-Pagan 

test, indicating heteroscedasticity. Both models also produced pseudo p-values of 0.001 after completing 

significance tests, meaning we still saw spatial autocorrelation. While GWR did not have a stronger AIC 

score than spatial lag, it did not violate any of our assumptions.  

 

 

 

 

 


