MUSA 650 Keel, Rummler, Tanabe 1

Ben Keel, Jack Rummler, Kate Tanabe
MUSA 650: Geospatial Machine Learning in Remote Sensing
May 5, 2023

Damage Detection: Binarized classification models to detect hurricane flood damage
1. Introduction

With the increasing ramifications of climate change, natural disasters have become
more frequent, causing intense damage to critical infrastructure. In the US, the most
damaging hurricanes are now three times more frequent than they were 100 years
ago." Flooding is a pervasive effect of hurricanes, bringing intense rainfall, high winds,
and storm surges. Storm surges, which are caused by the combination of high winds
and low pressure, can lead to coastal flooding, adding to the damage.

After a hurricane event, flood damage assessment is critical to ensure that planners
and emergency responders can assess the scale of damage, efficiently allocate
recovery resources, and identify hot spot areas in need of assessment. Traditionally,
damage assessment is done by ground surveying after a flood event, which can often
be a laborious process, requiring intense use of capital and resources. However, a
faster way to accomplish damage assessment is by using remote sensing classification
and machine learning techniques to identify damage.

Leveraging the power of machine learning in remote sensing after a flood event,
planners can identify infrastructure that has been damaged and see if there is a spatial
pattern to infrastructure damage. This allows more effective deployment of recovery
resources quickly after a disaster. To accomplish this, we are building models that can
predict whether a building has been damaged or undamaged after a flooding event.
These images have binarized, ground truth labels (no_damage and damage), and we
are aiming to optimize the accuracy and loss of the models. This means that we want
to correctly predict the damage status and minimize the difference between actual and
predicted outcomes.

By successfully validating models on these metrics using this data, we can assume
that if new data is introduced, it would accurately predict if a building had flood
damage, allowing for more effective deployment of resources. This, in turn, saves local
governments and emergency management organizations time and resources.
Moreover, our analysis is quite granular, planners could use these models and look at
the spatial patterns of predicted damage, and be able to derive policy conclusions
about at-risk areas to invest in climate resilient mitigation for future disaster.

https://www.edf.org/climate/how-climate-change-makes-hurricanes-more-destructive

MUSA 650 Keel, Rummler, Tanabe 2

2. Data

We got our data from a Kaggle dataset® that has satellite images of hurricane flood
damage, specifically after Texas’ Hurricane Harvey in 2017. The images are various
cropped overhead views of homes surrounded by forests, grass, roads, and other
man-made infrastructure, and details from the training set may not be present in the
validation and test sets. We are utilizing three of the data folders given: train_another,
validation_another, and test, which have 5000, 1000, and 1000 of each label,
respectively. We believe that with 10000 total training images, and 2000 for validation
and testing, we have a robust data source to derive the accuracy of our methodology.

Distribution of Labels in Train, Validation, and Test Sets

5000 5000 _
5000 Train
Validation

. Test

4000 -

1000 1000 1000 1000
1000 4

0

No Démage Dan';age

Figure 1. Distribution of data

The data was collected using satellites soon after Hurricane Harvey happened, and
were geo-coordinates using aerial-view windows, which shows the data’s ability to
understand spatial distribution of flood damage.

https://www.kaggle.com/datasets/kmader/satellite-images-of-hurricane-damage

MUSA 650 Keel, Rummler, Tanabe 3

train set | damage train set | no damage validation set | damage

20 20 20

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

0 25 50 75 100 125 0 25 50 75 100 125

(=]

25 50 75 100 125

validation set | no damage test set | damage test set | no damage

20 20 20

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

0 25 50 75 100 125 0 25 50 75 100 125

0 25 50 75

100 125

Figure 2: Plots of each label from each data set

3. Methods

Our methodology is to complete a binary classification using a variety of deep learning
models. Specifically, we chose three different types of convolutional neural networks to
experiment with: a traditional CNN optimized for our data, transfer learning using
VGG16, and a residual neural network. We hypothesized that with their strength in
image classification tasks, tested model architectures, and ability to address different
problems within remote sensing problems, these three models would give us results
that would optimize our accuracy and loss metrics.

CNN Model

Our first model is a simple CNN that uses convolutional layers and fully connected
layers, while incorporating other layers such as batch normalization and dropout and
others to help normalize the data, max pooling to consolidate the convolutions and
filters into smaller, sharper signals, and then flattens the data set into multiple dense
layers until the final binary output layer.

To make the training set models more generalizable and to give the CNN model a
fighting chance with the other more advanced methods, and given the uncertainty of
image variation among the training, validation, and test sets, we added a step of data
augmentation that adjusted the inputs with zoom and rotation.

MUSA 650 Keel, Rummler, Tanabe 4

Our architecture used two convolution layers among 11 total layers. The convolutions
each used a 3x3 kernel with a step of 1, using 4 filters, then 8, and were separated by a
batch normalization layer for generalization, a max pooling layer (2x2) to focus any
signal the convolutions picked up, and a dropout layer again for generalization. The
architecture of our CNN model is presented below:

Convolution 1 Batch) Convolution 2
Input ™ (afitersy || Normaiization [T| MaxPooling P Dropout P ggere)
Batch Dropout || Dense(128) [»| Dense(64) [» Dense(2) = Output
Normalization P P

Figure 3. CNN Architecture

VGG16 Model

Our second model uses transfer learning and builds off a convolutional neural network
architecture. Transfer learning allows us to leverage a pre-trained model and apply it to
another dataset, with the opportunity to add or adjust layers to fit the new dataset.
Transfer learning can save time and resources, while often resulting in better
performance outcomes.

We used a pre-trained VGG16 model to classify the satellite images of hurricane
damage. VGG16 is a type of convolutional neural network (CNN) that uses small
convolutional filters and 16 weighted layers. However, there are 24 total layers: 13
convolutional layers, 5 max pooling layers, 1 flatten layer, and 3 dense layers. The
convolutional layers are consistently followed by a max pooling layer, which
down-samples the images and reduces the risk of overfitting. VGG16 is unique in that it
uses smaller filters and strides with padding and max pooling, rather than having a
large amount of hyperparameters.® We used the Adam optimizer and categorical cross
entropy loss. The architecture of our VGG16 model is presented below.

3 Great Learnmg Everythlng You Need to Know about VGG16,” Medium (blog) September 23, 2021

https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-7315defb5918
https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-7315defb5918

MUSA 650 Keel, Rummler, Tanabe 5

Convolution Convolution . Convolution Convolution
11 12 | Maxpooling = 2.1 22

Input —

7

Convolution Convolution Convolution . Convolution
3.1 3.2 33 [=>| Maxpooling | 41

Maxpooling >

7

Convolution Convolution L<| Maxpooling |-> Convolution Convolution Convolution
4.2 43 poofing 5.1 5.2 53

N

Maxpooling |> Flattten > Dense > Dense > Dense > Output

Figure 4. VGG16 architecture
ResNet Model

Our final model is a residual neural network, which is an iteration of a convolutional
neural network. ResNet architectures are known for their ability to handle deep
networks for feature extraction and classification. ResNet models are good for handling
the vanishing gradient problem, which is the issue of when the model during training
optimizes to a point where the gradient becomes close to zero, essentially leading to
poor performance.* The ResNet architecture adds “residual connections” between
layers, directly adding one output of a layer to another layer further down the network,
allowing for gradients to flow more easily through the network, permitting deeper
learning of the images.

In the ResNet architecture, we use convolutional layers and residual blocks with batch
normalization and RelU activation functions after each convolutional layer. The skip
functions are the ones that help gradients move throughout the network more fluidly,
allowing for deeper learning and preventing the vanishing gradient problem. There are
four stages of the architecture: the first stage has one convolutional layer with three
residual blocks and three stages after have two residual blocks with a stride of 2 in the
first block, each stage with increasing input. The model is compiled using categorical
cross entropy and the Adam optimizer.

Given the size of the ResNet model architecture, it is best to check out using this link.

4 Rachel Zhiging Zheng, “Beginners’ Guide to Image Classification: VGG-19, Resnet 50 and
InceptionResnetV2 with TensorFlow,” Medium, April 29, 2020,
https://towardsdatascience.com/beginners-guide-on-image-classification-vgg-19-resnet-50-and-inceptionr

https://github.com/jtrummler/MUSA650_Final/blob/main/ResNetmodel.png
https://towardsdatascience.com/beginners-guide-on-image-classification-vgg-19-resnet-50-and-inceptionresnetv2-with-tensorflow-4909c6478941
https://towardsdatascience.com/beginners-guide-on-image-classification-vgg-19-resnet-50-and-inceptionresnetv2-with-tensorflow-4909c6478941
https://towardsdatascience.com/beginners-guide-on-image-classification-vgg-19-resnet-50-and-inceptionresnetv2-with-tensorflow-4909c6478941

MUSA 650 Keel, Rummler, Tanabe 6

4. Results

CNN Model

The CNN model was somewhat successful in classifying the hurricane damage images.
When used to predict the test set images, it has a loss of 0.267 and an overall accuracy
of 0.884. Increasing the convolutions further was not effective in increasing the overall
accuracy. Interestingly, the validation set accuracy was sometimes higher than the
training set during the different epochs. We hypothesize this is due to the data
augmentation providing enough image variability to adapt better to unknown data.
However, some validation set results were much worse. So overall, the data
augmentation helped with the CNN’s generalizability to new data, but if it ended on the
wrong epoch, then the model may turn out much worse.

Because our following model was VGG16, we refrained from refining the CNN model
past this stage of accuracy, else it may resemble our other method too closely and not
provide us with a distinct example.

Training & Validation Loss model accuracy

—— ftrain —— frain

A
074 validation 0.90 validation _‘¥/\"“"
/“-_/"/
064 0.85 1 /\/\/
|

0.5 1 .80 1 /
0.4 |

0.3 _

o
@
o

loss
accuracy

o
~
wu

0.70 1

0.2 4

0.65 1

T T T T T T T T T T T T
0 5 10 15 20 25 4] 5 10 15 20 25
epoch epoch

Figure 5. CNN Results

MUSA 650 Keel, Rummler, Tanabe 7

Truue Label: No Damage | Predicted Label: No Damage oTrue Label: Damage | Predicted Label: Damage

80 120

40 60 &0 100 120

True Label: No Damage | Predicted Label: Damage True Labal: Damage | Pradictad Labal: No Damags
o 1}

20
B
]
a0
100

120

[20 40] ao wo 120

Figure 6. CNN Classification Results

VGG16 Model

The VGG16 model was very successful in classifying the hurricane damage images.
The overall loss was 0.3577, meaning that there were very few errors in the predictions.
The overall accuracy was very high at 94%, with some epochs reaching 100%
accuracy. The epoch with the lowest accuracy still came in relatively high at 86% with
a loss of 0.7603. With such high accuracies, we do run the risk of overfitting which
could result in a loss of generalizability or ability to predict on new data. However, the
validation datasets still had low rates of loss and high accuracy levels. Validation loss
ranged from 0.22 to 0.39 and validation accuracy ranged from 90% to 94%. We
present plots of the losses and accuracies below.

Training & Validation Loss Training & Validation Model Accuracy

— frain 1.00 4 —— ftrain
074 validation = validation

Figure 7. VGG16 results

MUSA 650 Keel, Rummler, Tanabe 8

Even though our model had high accuracy overall, it did make some incorrect
predictions. We present examples of correct predictions for damage and no damage.
We also show examples of incorrect predictions: one where the model predicted
damage, but the outcome was no damage and one where the model predicted no
damage, but the outcome was damage.

True Label: Damage | Predicted Label: Damage True Label: No Damage | Predicted Label: No Damage
o L]

Q 0 0 &0 8y 100 e [} 20 40] BO 100 120

Tgue Label: No Damage | Predicted Label: Damage T{}ue Label: Damage | Predicted Label: No Damage
L 3 = =

L] 20 40 &0 80 100 120] 20 40 60 &b 100 10
Figure 8. VGG16 predictions

ResNet

Of the three models, ResNet was the weakest in both loss and accuracy metrics. The
test loss was 0.673, which is a pretty decent loss score, but worse than both the CNN
and VGG-16 methods. Moreover, the test accuracy was 63%, which was the lowest
accuracy score by far.

For the model training and validation process, a total of 10 epochs and a batch size of
32 was used. The plots of training and validation data are presented below.

MUSA 650 Keel, Rummler, Tanabe 9

Training & Validation Loss Training & Validation Model Accuracy
—— train —— ftrain
250 validation .9 4 validation ’—’—'H.—#—-_\\\\"=___‘_‘,,—”’—’H'H.—_K_ﬁ-—

=]
w0

2
[e=]

2001

e
~
L

150 1

loss
accuracy

=4
o
L

100 1

e
w
L

50

=]
B
L

T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
epoch epoch

Figure 9. ResNet results

We see that the training loss stayed constantly low and the training accuracy had a
relatively upward trajectory. However, the validation loss and accuracy experienced
pretty disjointed outcomes. Most shockingly, the third and fifth epoch had loss scores
of over 55 and 260, respectively; however, the loss function eventually evened out
toward the final few epochs. These random spikes indicate that the model is being
overfit to the training data throughout the training and validating process, and it may
also indicate insufficient regularization techniques. The high fluctuation in the validation
accuracy may indicate the model’s inability to generalize to data outside of the training
set.

5. Discussion

We derived several interesting insights from our modeling process. Interestingly, the
loss is less on our CNN model than on the one that uses transfer learning. This could
be due to the fact that our model is only trained on hurricane damage images, whereas
the VGG16 transfer learning model will incorporate them into its established weights,
and thus be more inflexible to new data but ultimately more accurate. The high
accuracy of the VGG16 model likely comes from its generalizability to several contexts,
as the model has been trained on a variety of data. However, model options like
ResNet, which also have provenly high success for deep learning, saw really low
accuracy. While we expected to see a higher accuracy even after multiple modeling
iterations, there are several reasons why it may have not performed as well. For one,
we could have utilized different transfer learning models for ResNet as well (e.g.,
ResNet50) which with predetermined architectures could have greatly benefited the
model’s generalizability and accuracy. Additionally, the model may have benefited from
more parameters (e.g., data augmentation), though given the model’s already intense
computational demands (3 hours to run 10 epochs), our parameterization was limited.

MUSA 650 Keel, Rummler, Tanabe
10

Our main takeaways from this process:

e CNN is a strong choice to reduce loss, likely due to the fact that we had a large
dataset with a binarized outcome, so it may benefit from the simplistic
architecture.

e VGG-16 was our overall most accurate, given the pre-trained nature of transfer
learning and its proveness to be accurate on unseen data. With customized
parameters, we could really increase the accuracy.

e ResNet was our weakest model, but also the most complex, which indicates
that our model may have been overfitting to the training data and could have
benefitted from a different architecture.

We also would like to note that we experimented with using image segmentation for
classification, specifically using a U-NET approach, but we eventually deemed it
unnecessary for this particular project, as we wanted to focus only on image
classification.

6. Conclusion

Overall, we built three deep learning models that all had wavering degrees of accuracy,
ranging from 63 to 94 percent. While some models performed better in accuracy and
loss than others, we believe that they all demonstrate the insightfulness of identifying
and detecting damage to critical infrastructure after a natural disaster. As floods
become more dramatic and intense with the ramifications of climate change, the need
for high-technical and quick responsive technologies and emergency management
methods is critical. We would definitely recommend at least our first two deep learning
models, and potentially our third with more parameter optimization, as ones that could
be highly useful in a planning and emergency response application to assess flood
damage data using the power of remote sensing.

If you would like to see our code, check our Jupyter Notebook.

https://github.com/jtrummler/MUSA650_Final/blob/main/MUSA650_final_keel_rummler_tanabe.ipynb

